

**Data Sheet** 

# EC-C1200-450

# Liquid cooled heavy duty converter

## **FEATURES**

- Extremely compact design -converter unit only 15 kg
- High enclosure class IP67 sealed from moisture and dust
- Liquid cooled with plain water or water/glycol mixture
- Ambient temperature up to +105°C and down to -40 °C
- Allowed coolant temperature up to +65°C
- Robust design withstanding high levels of mechanical vibrations and shocks
- Designed especially for highly cyclical loads typical in heavy mobile work machines

## Software features:

- 2x Isolated CAN ports supporting CANopen and SAE J-1939 protocols
- Possibility to create customer specific applications with CODESYS (IEC61131-3) software tool
- Bidirectional energy flow control
- High performance current and voltage control
- Interleaved PWM between phases for lower ripple current and voltage
- Wide selection of protective functions
- PowerUSER PC-program for commissioning and diagnostics available



# **GENERAL**

The device is a heavy-duty converter designed especially for electric or hybrid drive trains for mobile work machines, buses or marine vessels. It can act as motor inverter, active front end, create a microgrid or as a DC/DC-converter depending on the options selected.

# Typical applications:

- Boosting battery voltage to higher DC-link voltage. (+DC -option)
- Charging high voltage batteries from higher DClink voltage. (+DC -option)
- Controlling the speed and torque of electrical traction motors (+MC -option)
- Converting alternating current (AC) from electrical generator to direct current (DC) for energy storage (+MC -option)
- Active Front End for connecting to AC grid with regenerative power and low harmonic. (+AFE option)
- Microgrid (+UG -option)
- +DC -option requires an external inductance unit. See Danfoss EC-LTS data sheets for more information. (Contact Danfoss Mobile Electrification)
- +AFE and +UG -option requires an external LCL-filter unit. See Danfoss EC-LCL1200 data sheets for more information. (Contact Danfoss Mobile Electrification)



| SPECIFICATION               | NS                                                                               | Coolant volume                     | 300 cm <sup>3</sup>                                                                                           |
|-----------------------------|----------------------------------------------------------------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------|
| DC connection (+DC          | -option)                                                                         | Pressure loss                      | 100 mbar with 10l/min<br>(+25°C coolant)                                                                      |
| HV-side voltage range       | 0-850 V <sub>DC</sub>                                                            | Cooling liquid                     | -40°C+65°C                                                                                                    |
| HV-side nominal voltage     | 750 V <sub>DC</sub>                                                              | temperature                        | (with derating 1%/1°C<br>max. +75°C)                                                                          |
| HV-side nominal             | 350 A                                                                            | Ambient Conditions                 |                                                                                                               |
| current                     | 350 A                                                                            | Storage temperature                | -40°C105°C                                                                                                    |
| LV-side typical<br>voltage  | $75-750V_{DC}$ (maximum transformation ratio between LV and HV voltages is 1:10) | Operating temperature              | -40°C105°C<br>(with nominal coolant temp.)                                                                    |
| LV-side nominal current     | See table 1.                                                                     | Altitude Relative humidity         | max. 2000 m<br>100 %                                                                                          |
| Nominal power               | See table 1. (output power is limited                                            | helative Humbury                   | 100 %                                                                                                         |
| Normal power                | by the LV-side voltage and current.)                                             | Enclosure class                    | IP67                                                                                                          |
| HV-side voltage range       | 0-850 V <sub>DC</sub>                                                            | Mechanical vibration               | 10 G                                                                                                          |
| Switching frequency         | 8 kHz                                                                            |                                    | ISO 16750-3<br>Test VII – Commercial vehicle,                                                                 |
| DC connection (+MC          | C/+AFE/+UG -option)                                                              |                                    | sprung masses – Table 12<br>Notes:                                                                            |
| DC link voltage range       | 0-850 VDC                                                                        |                                    | test duration 8h axis (two axes tested; radial and axial)                                                     |
| DC link nominal voltage     | 750 VDC                                                                          |                                    | total spectral acceleration<br>5,91 grms                                                                      |
| AC connection (+MC          | /+AFE/+UG -option)                                                               | Mechanical shock                   | 50 G<br>ISO 16750-3                                                                                           |
| AC output voltage           | $0\text{-}560V_{\text{EFF}}(U_{\text{DC}} = 800V_{\text{DC}})$                   |                                    | 4.2.2 Test for devices on rigid points on the body and on                                                     |
| Maximum power               | 300 kW (500 V <sub>AC</sub> , 350 A <sub>RMS</sub> )                             |                                    | the frame Notes:                                                                                              |
| Output frequency            | 0580 Hz (Up to 1000 Hz as option)                                                |                                    | -acceleration: 500 m/s <sup>2</sup> ;<br>-duration: 6 ms;                                                     |
| Switching frequency         | 8 kHz                                                                            |                                    | -number of shocks: 10 per test direction.                                                                     |
| Control voltage inpu        | t                                                                                | Connections                        |                                                                                                               |
| Voltage range               | 7-33 V <sub>DC</sub>                                                             | Coolant connection                 | 2 x 20mm coolant hose                                                                                         |
| Power                       | 14.4 W                                                                           | Coolant Connection                 | connector                                                                                                     |
| Current                     | 0.6 A @ 24 V <sub>DC</sub><br>1.2 A @ 12 V <sub>DC</sub>                         | HV cable<br>recommended type       | HUBER+SUHNER Radox<br>Elastomer S screened<br>automotive cable<br>www.hubersuhner.com                         |
| Mechanical                  |                                                                                  | HV cable cross section             | ≤70 mm² (Cu)                                                                                                  |
| Dimensions (WxHxL, mm)      | 244x109x482                                                                      |                                    | ( /                                                                                                           |
| Weight                      | 15 kg                                                                            | HV cable glands (with +CG1 option) | Pflitsch blueglobe TRI bg 225ms<br>tri                                                                        |
| Cooling                     |                                                                                  | HV cable glands (with +CE2 option) | Pflitsch blueglobe TRI bg 232ms<br>tri                                                                        |
| Cooling                     | Diain water with a reconstitute                                                  | HV cable lug size                  | 35-8, 50-8, 70-8                                                                                              |
| Cooling liquid              | Plain water with appropriate corrosive inhibitor (max. 50 % corrosive inhibitor) | Recommended cable<br>lug           | 50mm <sup>2</sup> : Druseidt part no. 10853<br>70mm <sup>2</sup> : Druseidt part no. 10857<br>www.druseidt.de |
| Cooling liquid glycol type  | Ethylene glycol (Glysantin G48 recommended)                                      | LV connector                       | 35-pin Tyco electronics                                                                                       |
| Minimum cooling liquid flow | 10 l/min                                                                         | Ly connector                       | AMPSEAL connector www.tycoelectronics.com                                                                     |
| Maximum continuous          | 2 bar                                                                            | LV connector type                  | part no. 776163-1                                                                                             |

pressure

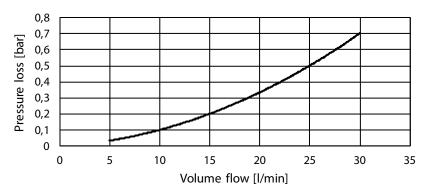
### EC-C1200-450



| LV mating connector type                    | TE 776164-1                                                                                   |                                          | used to improve efficiency of the motor                                                                       |
|---------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| LV mating connector pin type                | 0.5-1.25 mm <sup>2</sup> : TE 770854-3 (Gold plated)                                          | User application                         |                                                                                                               |
| LV connector pin configuration              | see table below                                                                               | IEC61131-3<br>environment                | CODESYS V3                                                                                                    |
| CAN connections                             | 2x isolated and unterminated CAN channels                                                     | Protections                              |                                                                                                               |
| CAN protocols                               | SAE J-1939<br>CANopen                                                                         | HW overcurrent trip  HW overvoltage trip | 750 A <sub>peak</sub>                                                                                         |
| User configurable<br>IO/analog output       | 5x isolated IO/analog output controllable with CODESYS applications                           | SW overcurrent trip                      | programmable level                                                                                            |
| DCDC control charac                         | eteristics (+DC -option)                                                                      | SW overvoltage trip                      | programmable level                                                                                            |
| Converter topology                          | Bidirectional (Buck or Boost)                                                                 | Short circuit protection                 | yes                                                                                                           |
| Control principle                           | Current control<br>Voltage control<br>Power control                                           | High-Voltage<br>interlock loop           | HV loop on signal connector<br>for external monitoring, HV<br>loop pins are connected on<br>the inverter side |
| Motor control characteristics (+MC -option) |                                                                                               | Inverter temperature                     | Sophisticated thermal model that can lower the current if                                                     |
| Controllable motor types                    | Synchronous permanent magnet motors                                                           | protection                               | needed                                                                                                        |
|                                             | Asynchronous induction motors Danfoss synchronous reluctance                                  | Inverter temperature<br>trip             | yes                                                                                                           |
|                                             | assisted permanent magnet motors (SRPM)                                                       | External temperature measurement         | yes, programmable warning,<br>fault and trip levels                                                           |
| Control principle                           | Rotor flux oriented current vector control                                                    | Standards and classi                     | fications                                                                                                     |
| Control methods                             | Torque reference motor control<br>Speed reference motor control                               | Pollution degree class 2                 | 2                                                                                                             |
|                                             | DC-link voltage control                                                                       | IEC 60664-1 Overvoltag                   | ge category III                                                                                               |
| Field weakening control                     | Maximizes the field weakening<br>performance by optimizing the<br>use of inverter current and | Immunity: IEC 61800-3                    | Sec.5.2, UNECE R10                                                                                            |
|                                             | torque production capability of the motor                                                     | Emissions: IEC 61800-3                   | Sec.6 (radiated), UNECE R10                                                                                   |
| Working point optimization                  | Maximum torque per ampere working point optimization is                                       |                                          |                                                                                                               |

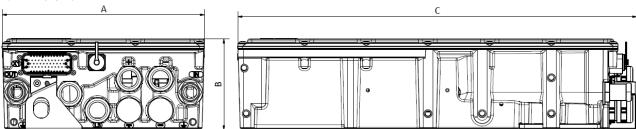
### POWER AND CURRENT VARIANTS

| Basic product type   | Nominal power<br>[kW] | Nominal current [A <sub>DC</sub> ] | Conditions                                                                   |
|----------------------|-----------------------|------------------------------------|------------------------------------------------------------------------------|
| EC-C1200-450-L+DC150 | 90                    | 150                                | LV-side voltage 600 $V_{DC}$ , HV-side voltage 750 $V_{DC}$                  |
| EC-C1200-450-L+DC250 | 150                   | 250                                | LV-side voltage 600 V <sub>DC</sub> , HV-side voltage 750<br>V <sub>DC</sub> |
| EC-C1200-450-L+DC300 | 180                   | 300                                | LV-side voltage 600 $V_{DC}$ , HV-side voltage 750 $V_{DC}$                  |
| EC-C1200-450-L+DC400 | 240                   | 400                                | LV-side voltage 600 $V_{DC}$ , HV-side voltage 750 $V_{DC}$                  |

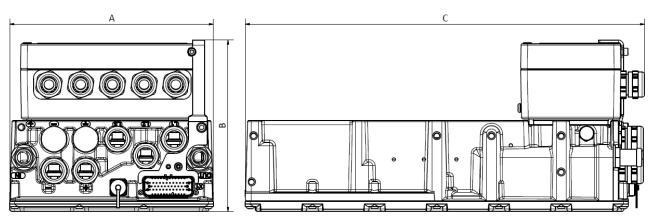

Table 1 Device current and power ratings for +DC -option. "-S" and "-L" versions have same ratings, see topic "SMALL/LARGE SYSTEM DIFFERENCES"



| Basic product type                | Nominal power [kVA] | Nominal current [A <sub>AVG</sub> ] |
|-----------------------------------|---------------------|-------------------------------------|
| EC-C1200-450-L+MC70+AFE70+UG70    | 50                  | 70                                  |
| EC-C1200-450-L+MC120+AFE120+UG120 | 100                 | 120                                 |
| EC-C1200-450-L+MC180+AFE180+UG180 | 150                 | 180                                 |
| EC-C1200-450-L+MC240+AFE240+UG240 | 200                 | 240                                 |
| EC-C1200-450-L+MC300+AFE300+UG300 | 250                 | 300                                 |
| EC-C1200-450-L+MC350+AFE350+UG350 | 300                 | 350                                 |


Table 2 Device current and power ratings for +MC, +AFE and +UG -options. "-S" and "-L" versions have same ratings, see topic "SMALL/LARGE SYSTEM DIFFERENCES"

## PRESSURE LOSS VS COOLANT FLOW



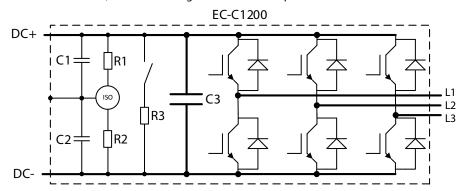

Picture 1 Device pressure loss vs coolant flow

#### **DIMENSIONS**

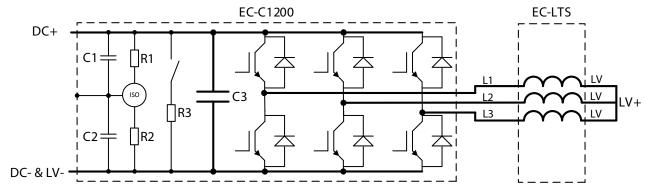


Picture 2 Device dimensions




Picture 3 Device dimensions with +CE1 or +CE2 option

| Dimension EC-C1200-450 Dimensions |        | EC-C1200-450 with +CE1 or +CE2 option |
|-----------------------------------|--------|---------------------------------------|
| Α                                 | 244 mm | 244 mm                                |
| В                                 | 109 mm | 205 mm                                |
| С                                 | 482 mm | 479 mm                                |


EC-C1200-450

#### SMALL/LARGE SYSTEM DIFFERENCES

Device has option for small systems (-S) and large systems (-L). Small system option is typical for vehicle applications and large system option is standard in marine applications because of the marine regulations. Complete system should be looked when choosing the option as for example vehicle system with many devices could also need the L-option to keep the isolation resistance or Y-capacitors at reasonable level. In large and small system options, there are difference in the isolation measurement resistance, DC-link discharge resistor and Y-capacitor values as shown in Picture 5 and Table 3.



Picture 4 EC-C1200-450 internal schematic



Picture 5 EC-C1200-450 internal schematic and application example when used in combination with external inductance unit EC-LTS

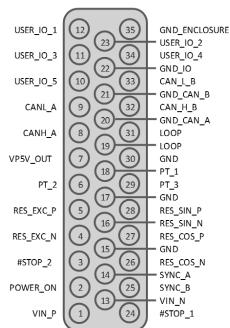
| Component                                      | Small-system option | Large-system option |
|------------------------------------------------|---------------------|---------------------|
| Isolation measurement R1, R2                   | 12 ΜΩ               | 240 ΜΩ              |
| Discharge resistor R3                          | 3.9 kΩ              | 39 kΩ               |
| Y-capacitor C1, C2                             | 330 nF              | 3.3 nF              |
| DC-link capacitor C3                           | 1 mF                | 1 mF                |
| Isolation resistance from DC-link to enclosure | 6 ΜΩ                | 120 ΜΩ              |

Table 3 S/L-system differences

Device with +MC, +AFE or +UG -option has internal schematic shown in Picture 4. Possible additional equipment like LCL-filter or motor is connected to the phases L1, L2 and L3. Options +AFE and +UG are not compatible with the -S version of the device. Generally, option -L is recommended for all applications.

Device with +DC -option requires external inductors to work as seen in application example shown in Picture 5. LV+ and LV- can be connected (for example) to battery and DC+ and DC- to a higher voltage DC-link. Device is in control of the discharging and charging of the battery. +DCE option is recommended when using the device in combination with the external inductance unit.

#### PARAMETRIZING, MONITORING AND DIAGNOSTIC OF THE DEVICE


PowerUSER monitoring and diagnostics software uses service connector on the device and PSSC service cable for connecting to the device. The PSSC is isolated RS485 and shielded cable specially designed to the demanding environments where the inverters are used, and it is available in 3 meter (PSSC-3M) and 10 meter version (PSSC-10M). The service cable is ordered separately.

| Product code | Cable length | Description                         |  |
|--------------|--------------|-------------------------------------|--|
| PSSC-3M      | 3 meters     | USB to RS485 isolated service cable |  |
| PSSC-10M     | 10 meters    | USB to RS485 isolated service cable |  |

Table 4 Service cables; ordered separately, needed for parametrizing, monitoring and diagnostics



#### SIGNAL CONNECTOR PINOUT



|                                                  | Pin                                                                         | Signal                           | RevR/S/T                                                               |  |
|--------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------|--|
|                                                  | number                                                                      | name                             | Comments                                                               |  |
| :                                                | 1                                                                           | VIN_P                            | Positive Power Supply (7-33V)                                          |  |
| ١                                                | 2                                                                           | POWER_ON                         | Active High, Turn ON @ >7.4V, Turn OFF @ < 5.8V                        |  |
| ١                                                | 3 #STOP_2                                                                   |                                  | Active Low, STOP @ < 1.2V, RUN @ > 4.65V                               |  |
|                                                  |                                                                             |                                  | Pulling one #STOP down stops the inverter                              |  |
|                                                  | 4                                                                           | RES_EXC_N                        | Resolver exitation, use twisted pair and shield                        |  |
|                                                  | 5                                                                           | RES_EXC_P                        | Resolver exitation, use twisted pair and shield                        |  |
| ١                                                | 6                                                                           | PT_2                             | PT100 or PT1000 temperature sensor input                               |  |
| ١                                                |                                                                             |                                  | Connect sensor against signal GND                                      |  |
| ١                                                | 7                                                                           | VP5V_OUT                         | +5V/200mA output for external sensors.                                 |  |
| ١                                                |                                                                             |                                  | Software control                                                       |  |
|                                                  |                                                                             | CANH_A                           | CAN bus A, isolated (Functional isolation <100 VDC)                    |  |
| -                                                | 9                                                                           | CANL_A                           | CAN bus A, isolated (Functional isolation <100 VDC)                    |  |
| ١                                                | 10                                                                          | USER_IO_5                        | Digital input ('1' @ 3V, '0' @ 2V) (max. 10 mA)                        |  |
| ١                                                |                                                                             |                                  | Digital output ('1' = 4.8V, '0' = 0V) (max. 10 mA)                     |  |
|                                                  |                                                                             |                                  | Digital output open collector (max. 80mA)                              |  |
|                                                  | 11                                                                          | USER_IO_3                        | Digital input ('1' @ 3V, '0' @ 2V) (max. 10 mA)                        |  |
|                                                  |                                                                             |                                  | Digital output ('1' = 4.8V, '0' = 0V) (max. 10 mA)                     |  |
|                                                  |                                                                             |                                  | Digital output open collector (max. 80 mA)                             |  |
| ١                                                |                                                                             |                                  | Analog input (0-32V) (input impedance ~100 kOhm)                       |  |
| ı                                                | 12                                                                          | USER_IO_1                        | Digital input ('1' @ 3V, '0' @ 2V) (max. 10 mA)                        |  |
| ١                                                |                                                                             |                                  | Digital output ('1' = 4.8V, '0' = 0V) (max. 10 mA)                     |  |
| ١                                                |                                                                             |                                  | Digital output open collector (max. 80 mA)                             |  |
| ١                                                |                                                                             |                                  | Analog input (0-32V) (input impedance ~100 kOhm)                       |  |
| 1                                                | 13                                                                          | VIN_N                            | Negative Power Supply (OV)                                             |  |
|                                                  | 14                                                                          | SYNC_A                           | SYNC_A for Master/Slave                                                |  |
|                                                  | 15                                                                          | GND                              | Signal GND / PT100 or PT1000 GND                                       |  |
|                                                  | 16                                                                          | RES_SIN_N                        | Resolver input, use twisted pair and shield                            |  |
| 17 GND Signal GND / PT100 or PT1000 GND          |                                                                             | Signal GND / PT100 or PT1000 GND |                                                                        |  |
| 18 PT_1 PT100 or PT1000 temperature sensor input |                                                                             |                                  |                                                                        |  |
|                                                  |                                                                             |                                  | Connect sensor against signal GND                                      |  |
|                                                  |                                                                             | LOOP                             | High Voltage Diagnostic Loop                                           |  |
| -                                                |                                                                             | GND_CAN_A                        | GND for CAN bus A                                                      |  |
|                                                  |                                                                             | GND_CAN_B                        | GND for CAN bus B                                                      |  |
| -                                                |                                                                             | GND_IO                           | GND for IO, IO is isolated (Functional isolation <100 VDC)             |  |
| -                                                | 23 USER_IO_2 Digital input ('1' @ 3V, '0' @ 2V) (max. 10 mA)                |                                  |                                                                        |  |
| -                                                |                                                                             |                                  | Digital output ('1' = 4.8V, '0' = 0V) (max. 10 mA)                     |  |
| -                                                | Digital output open collector (max. 80 mA)                                  |                                  | *                                                                      |  |
|                                                  | 34                                                                          | #STOD 1                          | Analog input (0-32V) (input impedance ~100 kOhm)                       |  |
|                                                  | 24                                                                          | #STOP_1                          | Active Low, STOP @ < 1.2V, RUN @ > 4.65V                               |  |
| -                                                | Pulling one #STOP down stops the inverter 25 SYNC B SYNC B for Master/Slave |                                  | •                                                                      |  |
| -                                                |                                                                             | RES COS N                        | SYNC_B for Master/Slave<br>Resolver input, use twisted pair and shield |  |
| -                                                |                                                                             | RES_COS_N                        | Resolver input, use twisted pair and shield                            |  |
|                                                  |                                                                             | RES_SIN_P                        | Resolver input, use twisted pair and shield                            |  |
| -                                                |                                                                             | PT_3                             | PT100 or PT1000 temperature sensor input                               |  |
|                                                  |                                                                             | ·                                | Connect sensor against signal GND                                      |  |
| 1                                                | 30                                                                          | GND                              | Signal GND / PT100 or PT1000 GND                                       |  |
|                                                  | 31                                                                          | LOOP                             | High Voltage Diagnostic Loop                                           |  |
|                                                  | 32                                                                          | CAN_H_B                          | CAN bus B, isolated (Functional isolation <100 VDC)                    |  |
|                                                  | 33                                                                          | CAN_L_B                          | CAN bus B, isolated (Functional isolation <100 VDC)                    |  |
|                                                  | 34                                                                          | USER_IO_4                        | Digital input ('1' @ 3V, '0' @ 2V) (max. 10 mA)                        |  |
|                                                  |                                                                             |                                  | Digital output ('1' = 4.8V, '0' = 0V) (max. 10 mA)                     |  |
|                                                  |                                                                             |                                  | Digital output open collector (max. 80 mA)                             |  |
| J                                                |                                                                             |                                  | Analog input (0-32V) (input impedance ~100 kOhm)                       |  |
|                                                  | 35                                                                          | GND_ENCLOSURE                    | Enclosure ground                                                       |  |



#### PRODUCT CODE AND OPTIONS

Use product code including all needed options for ordering. Standard options do not need to be listed in the code as they are selected by default if a non-standard option is not selected. Device requires external inductors to work. Separate inductor unit can be ordered with product name EC-LTS1200-400.

Options +MC, +AFE and +UG can be selected to the same unit at same time if necessary. +DC option can only be selected alone without other control options.

Options +AFE and +UG are not compatible with the option -S. **Generally, option -L is recommended for all applications**.

| Product code             | Description                                                                               |
|--------------------------|-------------------------------------------------------------------------------------------|
| EC-C1200-450-L+MC300     | L-version unit for controlling motor with 300 A current limit                             |
| EC-C1200-450-L+MC300+CG1 | L-version unit for controlling motor with cable glands and 300 A current limit            |
| EC-C1200-450-S+DC400+DCE | S-version unit for DCDC applications with double DC-connections and 400 ADC current limit |

Table 5 Product code examples



|                   |         | s = standard                          |       |                                                                |
|-------------------|---------|---------------------------------------|-------|----------------------------------------------------------------|
|                   |         |                                       | o = c | ption                                                          |
| Variant           | Code    | Description                           |       |                                                                |
| System size       | -S      | Small system                          | О     | Default EC-C unit for individual or small system installations |
|                   | -L      | Large system                          | 0     | EC-C unit for large system installations                       |
| Control           | +MC70   | Motor control, current limit 70 A     | 0     | Converter for motor/generator applications                     |
|                   | +MC120  | Motor control, current limit 120 A    | 0     | Converter for motor/generator applications                     |
|                   | +MC180  | Motor control, current limit 180 A    | 0     | Converter for motor/generator applications                     |
|                   | +MC240  | Motor control, current limit 240 A    | 0     | Converter for motor/generator applications                     |
|                   | +MC300  | Motor control, current limit 300 A    | 0     | Converter for motor/generator applications                     |
|                   | +MC350  | Motor control, current limit 350 A    | 0     | Converter for motor/generator applications                     |
|                   | +AFE70  | Active front end, current limit 70 A  | 0     | Converter for active front end applications                    |
|                   | +AFE120 | Active front end, current limit 120 A | 0     | Converter for active front end applications                    |
|                   | +AFE180 | Active front end, current limit 180 A | 0     | Converter for active front end applications                    |
|                   | +AFE240 | Active front end, current limit 240 A | 0     | Converter for active front end applications                    |
|                   | +AFE300 | Active front end, current limit 300 A | О     | Converter for active front end applications                    |
|                   | +AFE350 | Active front end, current limit 350 A | 0     | Converter for active front end applications                    |
|                   | +UG70   | Microgrid, current limit 70 A         | 0     | Converter for microgrid applications                           |
|                   | +UG120  | Microgrid, current limit 120 A        | 0     | Converter for microgrid applications                           |
|                   | +UG180  | Microgrid, current limit 180 A        | 0     | Converter for microgrid applications                           |
|                   | +UG240  | Microgrid, current limit 240 A        | О     | Converter for microgrid applications                           |
|                   | +UG300  | Microgrid, current limit 300 A        | 0     | Converter for microgrid applications                           |
|                   | +UG350  | Microgrid, current limit 350 A        | О     | Converter for microgrid applications                           |
|                   | +DC150  | DCDC control, current limit 150 ADC   | О     | Converter for DC/DC applications                               |
|                   | +DC250  | DCDC control, current limit 250 ADC   | О     | Converter for DC/DC applications                               |
|                   | +DC300  | DCDC control, current limit 300 ADC   | 0     | Converter for DC/DC applications                               |
|                   | +DC400  | DCDC control, current limit 400 ADC   | О     | Converter for DC/DC applications                               |
| Speed option      |         | Normal speed version                  |       | EC-C with motor/generator control firmware, capable of         |
|                   | *       | (<580Hz output frequency)             | S     | speeds below 580 Hz.                                           |
|                   | .116    | High speed version                    |       | EC-C with motor/generator control firmware, capable of         |
|                   | +HS     | (>580 Hz output frequency)            | 0     | speeds up to 1000 Hz.                                          |
| Communication     | *       | CAN1939                               | s     | EC-C with Standard SAE1939-communication                       |
|                   | +CO     | CANopen                               | 0     | EC-C with CANopen-communication                                |
| Connections       | *       | Normal connections                    | s     | EC-C with default HV connections                               |
| Connections       |         |                                       |       | EC-C with double DC and AC connectivity with                   |
|                   | +CE1    | Connection extension 1                | o     | connection extension box 1 (double M25 cable gland             |
|                   | . 621   | connection extension 1                | ľ     | threads)(Not compatible with +DCE option)                      |
|                   |         |                                       |       | EC-C with M32 cable gland threads on AC connection             |
|                   | +CE2    | Connection extension 2                | o     | with connection extension box 2 (choose also +DCE if           |
|                   | . 622   | connection extension 2                | ľ     | double DC connection is required)                              |
|                   |         |                                       |       | EC-C with double DC-connections: copper bushings for           |
|                   | +DCE    | DC-extension                          | О     | double connection (combatible with +CE2/+CG4/+CG5)             |
| Glands            | *       | No glands                             | s     | EC-C with no cable glands or plugs                             |
| Giulius           | +CG1    | Default M25 cable glands              | 0     | EC-C with 5x M25 cable glands and 2x M25 plugs                 |
|                   | 1001    | Default M25 cable graffus             | Ü     | EC-C with 2x M25 cable glands, 3xM32 cable glands and          |
|                   | +CG2    | Default M25/M32 cable glands          |       | 3xM25 plugs (for +CE2 option)                                  |
|                   |         |                                       | 1     | EC-C with 10x M25 cable glands (for +CE1 option with           |
|                   | +CG3    | Default M25 cable glands              | О     | double DC-link connections)                                    |
|                   | +CG4    | Default M25 cable glands              | 0     | EC-C with 7x M25 cable glands (for +DCE option)                |
|                   | +004    | Default M25 cable graffus             | _     |                                                                |
|                   | +CG5    | Default M25/M32 cable glands          | О     | EC-C with 4x M25 cable glands, 3xM32 cable glands and          |
|                   |         | -                                     |       | 3xM25 plugs (for combined +CE2 and +DCE options)               |
|                   | +CG6    | Default M25 cable glands              |       | EC-C with 8x M25 cable glands and 2x M25 plugs (for            |
|                   |         |                                       | 0     | +CE1 option with single DC-link connections)                   |
| Customer specific | *       | Default unit firmware-wise            | S     | EC-C with no pre-set parameters or application                 |
|                   | +CS     | Customer specific parameters or       | o     | EC-C with separately specified application and/or              |
|                   |         | application in FW                     | Ľ     | parameters                                                     |

Table 6 Option list

**NOTE!** Products delivered with high speed option (+HS) are subject to export control as dual-use items when transported outside of European community according to CE 428/2009 regulation.

Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without changes being necessary in specifications already agreed. All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype are trademarks of Danfoss A/S. All rights reserved.